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Abstract—Received Signal Strength (RSS) and Round Trip
Time (RTT) are two common metrics for a wireless receiver
to tell the proximity of a remote wireless transmitter. A large
RSS or a small RTT normally indicates a close transmitter, and
vice versa. Both metrics are effective in a benign environment.
However, when the transmitter modifies the send time or transmit
power to hide its real distance, they may fail to identify the actual
proximity of the transmitter. In this paper, we propose a secure
physical layer metric that not only reflects the distance between
the transmitter and the receiver, but is difficult to manipulate.
Our theoretical and experimental studies show that the proposed
metric and the distance is inverse proportional, in both the ideal
and practical scenarios with shadow fading and channel noise. We
also create distance distribution profiles based on the proposed
metric, and point out how such profiles can be used to enhance
the reliability of the distance estimation.

I. INTRODUCTION

In wireless communications, received signal strength (RSS)

has been long regarded as a very effective metric to indicate

whether the signal transmitter is close to or far away from

the signal receiver. A weak RSS is normally caused by a

long signal propagation distance, and accordingly implies a

far away transmitter, and vice versa. Based on the observation

of RSS values, multiple distance estimation models have

been developed. For example, one commonly used distance

estimation model is Pr(d) = Ct
Pt

dα [2], where Pr(d) is

received signal strength, Pt is transmitted signal strength, Ct

is a constant depending on the transceiver’s characteristics,

and α is the path loss exponent, which varies at different

situations. By utilizing such models, the receiver can estimate

the approximate distance between itself and the transmitter,

and the estimation results will be used to assist existing

wireless applications, including military/civilian localization

systems (e.g., [1] [18] [21]).

RSS demonstrated its success in suggesting the proximity

of the signal transmitter in a benign environment. However,

when the transmitter is dishonest, its reliability and accuracy

may be significantly reduced. Because a dishonest transmitter

can easily pretend to be closer to or farther away from the

receiver by increasing or decreasing its transmitted power.

In the past few years, distance bounding protocols (e.g., [3]

[16] [15]) have been proposed to utilize the round trip time

(RTT) as a metric to estimate the distance between the

transmitter and the receiver. In such protocols, the transmitter

sends a challenge to the prover, and the receiver replies with

a response that is generated based on the challenge. The

transmitter then calculates the RTT by RTT = tr − tt − tp,

where tt is the sending time of the challenge, tr is the

receiving time of the response, and tp is the overall machine

processing time. The distance between the transmitter and the

receiver can be approximated by RTT×c
2 , where c is the speed of

light. Thus, a larger RTT indicates a far away transmitter and

vice versa. However, RTT can also be easily manipulated by a

dishonest transmitter. By delaying its response to a challenge,

the dishonest transmitter can increase the RTT and appear to

be arbitrarily further from the local device than it actually is.

In this paper, we propose to find a secure physical layer

metric that can reflect the distance between the transmitter

and the receiver. Similar to RSS and RTT, the change of

the proposed metric can indicate the change of the distance.

However, it is difficult for a dishonest transmitter to manipulate

this metric. Our basic idea is to extract such a metric from

the multipath effect, which means that a signal sent by the

transmitter generally propagates to the receiver in the air along

multiple paths due to reflection, diffraction, and scattering.

Each path has an effect (e.g., distortion and attenuation) on

the signal traveling on it [13]. A channel impulse response

characterizes the overall effects imposed by the multipath

propagation, and it reflects the physical feature of a wire-

less link [6]. Because it is difficult to change the physical

feature, channel impulse responses have been used as “link

signatures” to uniquely identify the wireless link between a

wireless transmitter and a receiver [13], [23]. In this paper, we

will utilize link signatures to extract a metric that can provide

insights on the proximity of a remote transmitter.

The contributions of this paper are: (1) we find the novel

physical-layer metric that is strongly associated with the dis-

tance between the local and remote devices. The metric is easy

to extract but difficult to forge; (2) we reveal the theoretical

relationship between the distance and our proposed metric,

and discuss how external enviromental factors may affect this

relationship; (3) we validate and evaluate the effectiveness

of the proposed metric through experiments on the real-

world data, and suggest ways to increase the reliability of the

distance estimation.

The rest of the paper is organized as follows. Section II

describes our assumptions and system model. Section III

presents the preliminaries of this paper. Sections IV and V

introduce the proposed physical layer distance metric and

the theoretical relationship between the metric and distance,

respectively. Section VI discusses the evaluation result. Finally,

Sections VII and VIII discuss the related work and conclude

this paper respectively.



II. SYSTEM AND THREAT MODELS

To facilitate the discussion, we refer to the local receiver as

the verifier and the remote transmitter as the prover. Both the

verifier and the prover are equipped with the wireless interface

that can send or receive radio signals. The verifier determines

the distance from the prover to itself by analyzing the received

signal from the prover. The verifier may operate at active

or passive modes. In the active mode, the verifier sends a

request to the prover to initiate the distance estimation, and

the prover replies the verifier with wireless signal to enable the

estimation. In the passive mode, the verifier doesn’t initialize

any handshakes. Alternatively, it monitors the channel and

performs the distance estimation as soon as it hears the

wireless signal emitted from the prover when the prover is

engaging in other wireless activates. We assume that the

verifier is trusted while the prover is untrusted. The prover may

provide fake information regarding its hardware and software.

For example, it may increase or decrease the transmitted signal

power, or delay the replies to mislead the verifier.

There are multiple signal propagation models that charac-

terize the path loss of wireless signals, such as the free space

path loss model, ray tracing path loss models, the simplified

path loss model, and empirical path loss models [6]. The

common feature of these models is they all indicate that the

power of the transmitted signal decreases as the propagation

distance increases. In the following discussion, without loss

of generality, we focus on the following widely acknowledged

log-distance path loss model.

PL(db) = PTdb − PRdb = PL0 + 10α log10
d

d0
+Xσ (1)

In this model, all of the parameter are expressed in the dB

(decibel) form. PTdb represents the transmit power, PRdb is

the received power, d0 is the close-in reference distance, PL0

is a constant that depends on the antenna characteristics and

the path loss for a unit propagation distance of d0, and d is the

length of path along which the transmit signal travels from the

prover to the verifier. Typically, d0 = 1m in indoor situation

and d0=100m∼1km in outdoor situation. In our analysis, we

assume that d is larger than the unit reference distance d0. The

other two parameters α and Xσ denote the path loss exponent

ant the long term shadow fading factor. Note that the model

treats Xσ as a random variable of normal distribution.

III. PRELIMINARIES

Figure 1 (a) shows a simple example of multipath propaga-

tion. The signal sent by the prover is reflected by an obstacle

(i.e., a building), and thus it travels along path 1 (the direct

path from the prover to the verifier), and path 2 (the reflection

path). The signal copy that travels along one path is usually

referred to as a multipath component [6]. Let r1 and r2 denote

the multipath components that travel along path 1 and path 2

respectively. Figure 1 (b) is an example of the corresponding

channel impulse response, which shows that r1 arrives at the

verifier first and the peak of the signal amplitude of r1 is Pr1,

and r2 arrives after r1, and its peak is Pr2.
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IV. PHYSICAL LAYER METRIC FOR DISTANCE

ESTIMATION

Intuitively, if the prover increases (decreases) the transmit

power, both Pr1 and Pr2 will increase (decrease), but the

prover cannot adjust its transmit power such that it arbitrarily

manipulates only one of Pr1 and Pr2, because it is difficult for

the prover to identify and modify the physical paths over which

multipath components propagate [13]. On the other hand, the

length of the signal propagation path is closely related to the

amplitude of the received signal. A far-away prover results

in weaker Pr1 and Pr2 than a close prover. Based on this

intuition, we develop a distance metric below.

ma =
Pr1

Pr2
, (2)

The key feature of such a physical layer metric is that

it remains the same no matter how the prover changes the

transmit power. In Lemma 1, we prove that increasing or

decreasing the transmit power does not affect the metric.

Lemma 1: Let Pt denote the transmit power. Let Pr1 and

Pr2 be the amplitudes of the first and the second received

multipath components. If the prover changes Pt to nPt (n >

0), then both Pr1 and Pr2 will change to
√
nPr1 and

√
nPr2.

Proof: According to Equation 1, the amplitude Pr1 and Pr2

can be approximated as

PRdb = PTdb − PLdb = PTdb − PL0 − 10α log10
d

d0
−Xσ

Pr1 =

√

pt(w) · (d0

d1
)α

pL0 · xσ1
, Pr2 =

√

pt(w) · (d0

d2
)α

pL0 · xσ2
,

where d1 and d2 are the lengths of first and second path the

signal traveling through. If Pt is changed to nPt (n > 0), then

Pr1 and Pr2 will accordingly change to
√
nPr1 and

√
nPr2,

and the distance metric (the ratio of Pr1 to Pr2) remains the

same. �

V. DISTANCE V.S. METRIC

We’ve already introduced the physical layer metric and

discussed its property in the previous part. In this section,

we will investigate the relationship between the metric and the

actual distance between the verifier and the prover. In addition,

we’ll discuss the impact of different environment factors on

such a relationship.



A. Modeling the Relationship

We assume that there is no large obstacles that can sig-

nificantly block the straight line propagation between verifier

and prover. The first arrived multipath component roughly

travels through the straight line due to the penetration and

diffraction-around-object effect. Thus, d1 (the length of path 1)

can approximate the real distance between verifier and prover.

The distance metric ma can be written as

ma =
Pr1

Pr2
=

√

pt(w)·(
d0
d1

)α

pL0·xσ1
√

pt(w)·(
d0
d2

)α

pL0·xσ2

=

√

(
d2

d1
)α

xσ2

xσ1

=

√

(
d2

d1
)α100.1(Xσ2−Xσ1)

Let t denotes the time at which the prover’s signal begins

to send signal. Further let t1 and t2 denote the arrival times

of the first and the second multipath components, respectively.

Thus, d1 = (t1 − t)c and d2 = (t2 − t)c. Then, we have the

following relation

d2 = (t2 − t)c = (t1 − t)c+ (t2 − t1)c = d1 +∆tc,

where ∆t = t2 − t1. We can further simplify the function

about ma by eliminating the unknown factor d2.

ma =

√

(
d2

d1
)α100.1(Xσ2−Xσ1)

=

√

(
d1 +∆tc

d1
)α100.1(Xσ2−Xσ1)

The above equation gives us

d1 =
∆tc

( (ma)2

100.1(Xσ2−Xσ1) )1/α − 1
, (3)

where Xσ1 and Xσ2 represent the long term fading in dB of

path 1 and path 2, respectively. They are normally assumed

to be independent zero-mean Gaussian random variables [8].

Equation 3 is a function of ma, ∆t and the path loss exponent

α. Note that for a channel of bandwidth B, the required

time for resolving two paths is a constant that can be usually

approximated by 1
B [6]. Thus, ∆t ≈ 1

B . In additional, the path

loss exponent α is determined by the physical feature of the

wireless medium [11]. Therefore, we can find from Equation 3

that d1 is reverse proportion to the distance metric ma.

This means that a smaller ma indicates a longer propagating

distance and vice versa.

B. Impact of Practical Factors

Equation 3 is derived from the theoretical radio signal

propagation model and it only reflects the reverse propor-

tional relationship between the distance metric and the actual

distance. Note that path loss, shadowing fading, and channel

noise are the major factors that have the direct impact on

the propagating signals, but Equation 3 lacks the information

regarding how to determine these factors. In the following, we

discuss the impact of these factors and some common ways

to decide these factors.

Path Loss Exponent: Since the path loss is the key factor

that affects the relationship between received signal strength

and the propagation distance, it’s of the first priority to find a

proper path loss exponent α, which indicates the reduction of

the signal power when the signal travels through the space. In

practice, path loss exponent varies in different situations and

its value is normally decided empirically. The typical value of

α is 1.6∼1.8 for indoors, 2.0 for vacuum free space, 2.7∼3.5

for urban areas and 3.0∼5.0 for suburban areas [6].

Shadow Fading: Shadow fading is the phenomena that

the signal strength is reduced by certain obstacles during the

propagation. Specifically, wireless signals that travel along

different paths may be obstructed by particular obstacles (such

as mountains or buildings), and accordingly their power will

exhibit random fluctuations when they arrive to the receiver,

due to the distinct power loss from various paths. Signals

that travel through huge obstacles in some paths will suffer

significant power loss, while others may be less obstructed

and have a slightly decreased power.

Shadow fading can introduce random fluctuations to the

received signal strength. These random fluctuations are usually

modeled as a lognormal random variable xσ [6], and thus

the shadow fading Xσ in dB can be represented by Xσ =
10 log10 xσ . We can see that Xσ is a Gaussian random variable

with zero mean distribution. The empirical standard deviations

of shadow fading ranges from 1.6 to 4.3 dB [8]. Figure 2

gives an example about the impact of shadow fading on the

relationship between the proposed metric ma and the distance.

We model both paths as independent Gaussian distribution

with a standard deviation of 3 dB. Although the distance

fluctuates due to the existence of the shadow fading, the

reverse proportion relationship between ma and real distance

showing is still maintained (i.e. an increasing ma indicates a

decrease of the real distance).
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Fig. 2: Impact of shadow fading

Channel Noise: Channel noise always exists in the wireless

communication channel to affect the accuracy of the data de-

modulation or channel estimation. The channel noise has been

regarded as independent from the transmit signals, and it is



usually modeled as the additive white Gaussian random noise

(AWGN) [6]. In common wireless communication systems

like WiFi networks, the average signal-to-noise ratio (SNR)

that allows the correct demodulation of received messages is

normally around 30dB [5]. Figure 3 shows the distance as

a function of ma for such a SNR. We can observe that the

distance shows a decreasing trend as ma increases.
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Fig. 3: Impact of channel noise

VI. EVALUATION RESULTS

In this section, we perform experiments using real-world

channel data to verify the relationship between the distance

and the proposed distance metric ma. We also create the

distance distribution profiles based on ma, and show how they

can be used to increase the reliability of distance estimation.

A. Experiment Setting

We validate the relationship between the real distance and

our proposed physical layer metric using the CRAWDAD

data set [12], which contains more than 9,300 real channel

impulse response measurements (i.e., link signatures) in a 44-

node wireless network [20]. The measurement environment

is an indoor environment with obstacles (e.g., cubicle offices

and furniture) and scatters (e.g., windows and doors). More

information regarding the CRAWDAD data set can be found

in [12], [20].

B. Performance of the Proposed Metric

For each of the channel impulse response from the CRAW-

DAD data set, we calculate the amplitude ratio of the first to

the second received multipath component to extract the corre-

sponding distance metric ma. Let S denote the set formed by

mas. For the i-th element in S, we calculate the corresponding

actual distance d between the transmitter and the receiver.

Figure 4 shows that d decreases as ma increases. This is

consistent with our theoretical discovery that the distance is in

a reverse proportional relationship with the proposed metric.

We can also see that some fluctuation occurs when ma is

large. These fluctuation is mainly caused by shadow fading

and channel noise. However, the overall decreasing tendency

of the distance is still observable.
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Fig. 4: Relationship between ma and distance in real-word

channel
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Fig. 5: ma’s CDF for different real distance range

We draw the Empirical Cumulative Distribution Function

(ECDF) curves of ma for different distance ranges in Figure 5.

From this figure, we can see that when the distance range is

between 10 and 15 (meters), only 15% elements of set S are

larger than 5. However, for the distance range of 5 to 10, 20%

elements of S values are larger than 5. When the distance

range is further decreased to 0 to 5, the distribution of ma

values change significantly and as many as 50% elements of

S are larger than 5. This observation reveals that ma is very

sensitive to the distance changes.

C. Distance Distribution Profiles

To enhance current distance estimation techniques, we cre-

ate the distance distribution profiles for different ranges of

ma. Figures 6 shows the distance distributions when ma is

between 0 and 10. By utilizing the curve fitting tool provided

by Matlab, we can see from Figure 7 that this distribution can

be approximated by a Gaussian distribution with a mean value

of 7.681, and a standard deviation of 5.595. Figures 8 and 9

show the distance distributions when ma ranges from 10 to 20,

and 20 to 30 respectively. Due to the lack of enough channel

data, both distributions cannot be determinately described by

an existing known distribution. However, they still show the

decreasing trend as ma increases
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Fig. 6: Real distance’s probability density function (PDF)

when ma ranges from 0 to 10
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The distance distribution profiles can be used as indicators

to increase the reliability of distance estimation. After estimat-

ing the distance of the prover using certain distance models

(e.g., Equation 3), the verifier retrieves the distance distribution

profile that is empirically generated during a training phase,

and then finds the likelihood of the estimated distance from

the profile. If the likelihood is smaller than a pre-determined

threshold, the estimated distance will be marked as unreliable.

VII. RELATED WORK

In recent years, multiple schemes have been proposed to

find the real distance between a prover and a verifier. In this

section, we briefly discuss these schemes.

Distance bounding protocols: As mentioned earlier, dis-

tance bounding protocols (e.g., [3], [7], [15]) explore the round

trip time (RTT) to identify the distance of a remote wireless

device. They were originally introduced by Brands and Chaum

in [3], and further developed in [15] [16] [7]. To prevent the

prover from sending a response before receiving the chal-

lenges, most distance bounding protocols require the prover

to XOR the received challenges with its own identity [3].

In these protocols, the overestimation and underestimation of

the processing time at the prover may introduce a significant

distance bounding error due to the rapid propagation speed

of the radio signals. To eliminate the impact of processing

time, [16] [17] implemented a distance bounding protocol

using the acoustic signal. Since the acoustic signal travels at a

much lower speed than the radio signal, the distance bounding

system can tolerate the imperfect estimation of the processing

time to certain level and thereby introduce less errors. Some

other research works [7] [19] show that the distance bounding

protocols are vulnerable to RF (Radio Frequency) wormhole

attacks, and corresponding countermeasures are proposed in

[15] and [14].

Received signal strength (RSS): RSS readings have been

widely used in indoor and outdoor localization due to its low

cost and easy implementation [1] [21] [18]. Based on how the

signal distortion caused by channel noise, shadow fading and

multipath fading are processed, the RSS localization can be

classified into range-free and range-limited techniques. In the



former, RSSs are used as signatures to distinguish wireless

transmitters at different locations. It is first proposed in [1],

where RSSs of different locations are pre-measured and used

as references to localize a target transmitter in the indoor

environment. This technique is further extended to the self-

localization application in [21]. The profiles of the RSSs of

FM signals emitted by radio stations are created, so that a

mobile device can infer where it is by comparing RSS at its

current position with the RSSs in the database. On the other

hand, ranging-limited techniques are widely used in wireless

sensor networks [18]. In such techniques, the RSSs of received

signals are used to estimate how far away the signal source is

based on the well-established signal propagation model. The

multilateration rule is then applied to find the position of the

signal source.

Time Difference of Arrival (TDOA): These approaches

measure the TDOA of signals sent from multiple synchronized

transmitters at known locations and then perform multilat-

eration to achieve the self-localization. TDOA localization

algorithms are widely used to determine the positions of

mobile phones in cellular networks, since base stations are

well synchronized. The localization accuracy highly depends

on the existence of a strong LOS component. The multipath

effect and NLOS propagation may introduce a significant

number of errors that would deteriorate the reliability of

TDOA localization [22]. To deal with this problem, some

existing research works propose to extract the LOS component

from received signal [10] [9]. If the impact of NLOS is already

known to the system, the NLOS mitigation scheme [4] can also

be used to eliminate the error introduced by NLOS.

VIII. CONCLUSION

In this paper, we proposed a secure physical layer metric

that is closely associated with the distance of a remote wireless

transmitter. We validated the proposed metric using both

theoretical analysis and real-word channel data. Our results

show that the proposed metric and the distance between the

transmitter and the receiver is inverse proportional, in both

the ideal and practical scenarios with shadow fading and

channel noise. We also created distance distribution profiles

for different metric ranges, and suggested ways to increase the

reliability of the distance estimation based on such profiles.
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